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Total synthesis of dapiramicin B
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Abstract—The first total synthesis of dapiramicin B, a nucleoside antibiotic, is described. The characteristic N-glycoside linkage in
dapiramicin B was effectively constructed by way of the Pd-catalyzed coupling reaction of a heptopyranosylamine with a bromo-
pyrrolopyrimidine derivative.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. Structures of dapiramicins and retrosynthetic route to
dapiramicin B (1). MPM = –CH2C6H4(p-OMe), SEM = –CH2O-
CH2CH2SiMe3.
Dapiramicin B (1) is a nucleoside antibiotic produced by
Micromonospora sp. SF-1917, and reported to show
weak in vivo activity against the sheath blight of rice
plants caused by Rhizoctonia solani in a green house
test.1 The structurally related antibiotic, dapiramicin A
which is more potent than dapiramicin B, has been also
isolated from the same microorganism. The structure of
dapiramicin A was determined by careful spectral and
degradation studies to be 2-[4 0-(400-O-methyl-b-DD-gluco-
pyranosyl)-6 0-deoxy-a-DD-glucopyranosyl]amino-5-cya-
no-4-methoxy-7H-pyrrolo[2,3-d]pyrimidine (Fig. 1).2 By
spectral comparison, it was shown that the structure of
dapiramicin B (1) was closely related to dapiramicin
A, and assigned to be a 6 0-hydroxylated derivative of
dapiramicin A possessing a b-N-glycoside linkage.2

The structures of dapiramicins are unusual and quite
unique among nucleoside antibiotics with respect to
the N-glycoside structures; while conventional nucleo-
side antibiotics bear a sugar at the endocyclic nitrogen
in the heterocycles, dapiramicins are glycosylated at
the exocyclic nitrogen. In spite of their structural fea-
ture, no synthetic approach to dapiramicins has been
reported. In this letter, we report the first total synthesis
of dapiramicin B (1), which fully confirmed its unique
structure.

Our retrosynthetic analysis (Fig. 1) suggested that the
N-glycoside structure in 1 would be constructed by the
Pd-catalyzed coupling reaction of protected glycosyl-
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amine 2 with bromo-heterocycle derivative 3. This meth-
odology, an important extension of the Buchwald–
Hartwig N-arylation reaction,3 proved to be effective
for the construction of the N-glycoside bond between a
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sugar and an exocyclic nitrogen of heterocycles4 and was
successfully utilized in our total synthesis of spicamycin,
a nucleoside antibiotic possessing the similar N-glycoside
bond between a sugar moiety and C-6 amino group of
adenine.5 The disaccharide–amine 2 was planned to be
prepared from DD-cellobiose, while the bromo-heterocycle
3 was envisioned as arising from the known 2-amino-5-
cyanopyrrolo[2,3-d]pyrimidin-4-one (4).6

Synthesis of glycosylamine 2 commenced from commer-
cially available DD-cellobiose (Scheme 1). O-Acetylation
of DD-cellobiose, followed by introduction of an azide
function to the anomeric carbon provided the known
b-azide derivative 5.7 Removal of the O-acetyl groups
and subsequent treatment with anisaldehyde dimethyl
acetal gave 4 0,6 0-O-anisylidene compound 68 in 63%
yield. The remaining hydroxy groups in 6 was fully pro-
tected as O-MPM ethers to give 7 (54% yield). The anisi-
lydene acetal in 7 was regioselectively cleaved by the
action of NaBH3CN in the presence of trifluoroacetic
acid (TFA)9 to afford 8 in 84% yield, whose hydroxy
group was converted into methyl ether to provide 9 in
92% yield. Hydrogenation of 9 in the presence of 10%
Pd on carbon cleanly afford glycosylamine 2,10 whose
anomeric configuration at C-1 was confirmed to be b
by 1H NMR analysis (H-1; d = 4.06, J1,2 = 8.4 Hz).
Since amine 2 was found to be not so stable and was
thus used without purification in the next coupling
reaction.

The requisite counter part of the coupling reaction, bro-
mo-heterocycle 3 was synthesized as shown in Scheme 2.
Treatment of the known 5-cyanopyrrolopyrimidine 4,6

prepared in 70% yield by condensation of 2-chloro-2-
formylacetonitrile with 2,4-diamino-6-hydroxypyrimi-
dine, with 2-(trimethylsilyl)ethoxymethyl chloride
(SEMCl) in the presence of NaH gave 10 in 36% yield.
For O-methylation at the C-4 position, compound 10
was treated with Me3OBF4 or Mitsunobu reagents
(Ph3P, diethyl azodicarboxylate and MeOH), however,
the desired product 12 could not be obtained in accept-
able yields. After several attempts, it was found that the
reaction of 10 with ethereal diazomethane in the pres-
ence of silicic acid11 and NaHCO3 in MeOH under son-
ication gave improved results, and methyl ether 12 and
its N-methyl isomer 11 were obtained in 41% and 43%
isolated yields, respectively. Substitution of the amino
function in 12 into a bromo substituent was successfully
achieved by treatment of 12 with SbBr3 and t-BuONO in
CH2Br2

12 to afford 310 in 72% yield.

Having completed the preparation of both glycosyl-
amine 2 and heterocycle 3, we next investigated the
key reaction, construction of the N-glycoside (Scheme
3). Reaction of 2 with 3 (200 mol % to 2) under the
similar reaction conditions employed in the synthesis
of spicamycin [Pd2(dba)3 (10 mol % to 2), (S)-BINAP
(20 mol % to 2) and NaO-t-Bu (150 mol % to 2) in tolu-
ene]3f,4,5b at 100 �C for 1 h in a sealed tube successfully
provided coupling products 13b10 and 13a10 in moderate
yields (13b in 30% and 13a in 12% yields from 9, respec-
tively). After some attempts, 13b and 13a were obtained
in 55% and 14% isolated yields, respectively, when the
reaction was carried out in the presence of the increased
amount of 3 (250 mol % to 2), Pd2(dba)3 (20 mol % to 2)
and (S)-BINAP (60 mol % to 2) in toluene at 80 �C
for 6 h.13 The observed signals of anomeric protons
of the N-glycoside moiety in 13b (d = 5.31, J 10 ;20 ¼
9:0, J 10 ;NH ¼ 9:0 Hz) and 13a (d = 5.77, J 10 ;20 ¼ 4:8,
J 10;NH ¼ 6:0 Hz) in the 1H NMR spectra clearly assigned
their anomeric configurations. The correlation between
H-1 0 (anomeric proton) and C-2 on the heterocycle ob-
served in HMBC experiments of 13b also supported its
N-glycoside structure. Whereas an anomerically pure
b-glycosylamine 2 was employed as the starting mate-
rial, the coupling products 13a and 13b were obtained
as an anomeric mixture. These results suggested that
the anomerization of 2, 13a and/or 13b had occurred
during the reaction.14 Similar thermal anomerization
of glycoslyamines15a and N-glycosides possessing a pro-
tected adenine5b and other substituents,15 which are pro-
posed to involve imine or iminium intermediates,15c

have been reported from several groups.

Finally, treatment of 13b with excess BF3OEt2
16 in

CH2Cl2 at 0 �C for 30 min removed the O-MPM as well
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as N-SEM protecting groups to furnish dapiramicin B
(1) in 92% yield after purification with the reversed-
phase and gel filtration chromatographies. The physical
properties as well as spectral data (1H NMR and IR) of
synthetic specimen {mp 241–244 �C; ½a�20

D �36.3 (c 0.12,
50% aqueous AcOH)} showed good accordance with
those reported for natural dapiramicin B {mp 241–
243 �C; ½a�20

D �37.6 (c 1.0, 50% aqueous AcOH)}.2a

In summary, the first total synthesis of dapiramicin B (1)
has been accomplished. This synthesis fully confirmed
the proposed structure of the natural product and re-
vealed that the Pd-catalyzed N-arylation methodology
is highly effective for construction of N-glycoside struc-
tures in which an exocyclic nitrogen of the heterocycle is
connected to the sugar. Further study for the stereo-
selective synthesis of dapiramicin A based on the same
methodology is underway.
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